Рассчитать высоту треугольника со сторонами 92, 81 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 81 + 37}{2}} \normalsize = 105}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{105(105-92)(105-81)(105-37)}}{81}\normalsize = 36.8528755}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{105(105-92)(105-81)(105-37)}}{92}\normalsize = 32.4465534}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{105(105-92)(105-81)(105-37)}}{37}\normalsize = 80.6779166}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 81 и 37 равна 36.8528755
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 81 и 37 равна 32.4465534
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 81 и 37 равна 80.6779166
Ссылка на результат
?n1=92&n2=81&n3=37
Найти высоту треугольника со сторонами 66, 56 и 51
Найти высоту треугольника со сторонами 145, 128 и 52
Найти высоту треугольника со сторонами 144, 88 и 85
Найти высоту треугольника со сторонами 106, 94 и 65
Найти высоту треугольника со сторонами 107, 102 и 89
Найти высоту треугольника со сторонами 72, 66 и 13
Найти высоту треугольника со сторонами 145, 128 и 52
Найти высоту треугольника со сторонами 144, 88 и 85
Найти высоту треугольника со сторонами 106, 94 и 65
Найти высоту треугольника со сторонами 107, 102 и 89
Найти высоту треугольника со сторонами 72, 66 и 13