Рассчитать высоту треугольника со сторонами 92, 89 и 75
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 89 + 75}{2}} \normalsize = 128}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{128(128-92)(128-89)(128-75)}}{89}\normalsize = 69.3531933}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{128(128-92)(128-89)(128-75)}}{92}\normalsize = 67.0916761}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{128(128-92)(128-89)(128-75)}}{75}\normalsize = 82.2991227}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 89 и 75 равна 69.3531933
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 89 и 75 равна 67.0916761
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 89 и 75 равна 82.2991227
Ссылка на результат
?n1=92&n2=89&n3=75
Найти высоту треугольника со сторонами 132, 103 и 31
Найти высоту треугольника со сторонами 113, 81 и 45
Найти высоту треугольника со сторонами 127, 119 и 21
Найти высоту треугольника со сторонами 71, 40 и 33
Найти высоту треугольника со сторонами 88, 81 и 49
Найти высоту треугольника со сторонами 115, 113 и 95
Найти высоту треугольника со сторонами 113, 81 и 45
Найти высоту треугольника со сторонами 127, 119 и 21
Найти высоту треугольника со сторонами 71, 40 и 33
Найти высоту треугольника со сторонами 88, 81 и 49
Найти высоту треугольника со сторонами 115, 113 и 95