Рассчитать высоту треугольника со сторонами 92, 91 и 11
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 91 + 11}{2}} \normalsize = 97}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{97(97-92)(97-91)(97-11)}}{91}\normalsize = 10.9947238}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{97(97-92)(97-91)(97-11)}}{92}\normalsize = 10.8752159}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{97(97-92)(97-91)(97-11)}}{11}\normalsize = 90.9563514}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 91 и 11 равна 10.9947238
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 91 и 11 равна 10.8752159
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 91 и 11 равна 90.9563514
Ссылка на результат
?n1=92&n2=91&n3=11
Найти высоту треугольника со сторонами 127, 113 и 41
Найти высоту треугольника со сторонами 25, 23 и 7
Найти высоту треугольника со сторонами 84, 62 и 60
Найти высоту треугольника со сторонами 149, 142 и 126
Найти высоту треугольника со сторонами 98, 57 и 45
Найти высоту треугольника со сторонами 140, 121 и 114
Найти высоту треугольника со сторонами 25, 23 и 7
Найти высоту треугольника со сторонами 84, 62 и 60
Найти высоту треугольника со сторонами 149, 142 и 126
Найти высоту треугольника со сторонами 98, 57 и 45
Найти высоту треугольника со сторонами 140, 121 и 114