Рассчитать высоту треугольника со сторонами 93, 68 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{93 + 68 + 35}{2}} \normalsize = 98}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{98(98-93)(98-68)(98-35)}}{68}\normalsize = 28.304144}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{98(98-93)(98-68)(98-35)}}{93}\normalsize = 20.6955031}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{98(98-93)(98-68)(98-35)}}{35}\normalsize = 54.9909083}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 93, 68 и 35 равна 28.304144
Высота треугольника опущенная с вершины A на сторону BC со сторонами 93, 68 и 35 равна 20.6955031
Высота треугольника опущенная с вершины C на сторону AB со сторонами 93, 68 и 35 равна 54.9909083
Ссылка на результат
?n1=93&n2=68&n3=35
Найти высоту треугольника со сторонами 120, 96 и 37
Найти высоту треугольника со сторонами 104, 100 и 97
Найти высоту треугольника со сторонами 126, 122 и 71
Найти высоту треугольника со сторонами 55, 37 и 29
Найти высоту треугольника со сторонами 143, 113 и 58
Найти высоту треугольника со сторонами 107, 74 и 42
Найти высоту треугольника со сторонами 104, 100 и 97
Найти высоту треугольника со сторонами 126, 122 и 71
Найти высоту треугольника со сторонами 55, 37 и 29
Найти высоту треугольника со сторонами 143, 113 и 58
Найти высоту треугольника со сторонами 107, 74 и 42