Рассчитать высоту треугольника со сторонами 93, 72 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{93 + 72 + 59}{2}} \normalsize = 112}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112(112-93)(112-72)(112-59)}}{72}\normalsize = 58.9998954}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112(112-93)(112-72)(112-59)}}{93}\normalsize = 45.6773384}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112(112-93)(112-72)(112-59)}}{59}\normalsize = 71.9998723}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 93, 72 и 59 равна 58.9998954
Высота треугольника опущенная с вершины A на сторону BC со сторонами 93, 72 и 59 равна 45.6773384
Высота треугольника опущенная с вершины C на сторону AB со сторонами 93, 72 и 59 равна 71.9998723
Ссылка на результат
?n1=93&n2=72&n3=59
Найти высоту треугольника со сторонами 128, 112 и 95
Найти высоту треугольника со сторонами 131, 112 и 69
Найти высоту треугольника со сторонами 101, 70 и 39
Найти высоту треугольника со сторонами 140, 127 и 14
Найти высоту треугольника со сторонами 65, 36 и 31
Найти высоту треугольника со сторонами 133, 104 и 75
Найти высоту треугольника со сторонами 131, 112 и 69
Найти высоту треугольника со сторонами 101, 70 и 39
Найти высоту треугольника со сторонами 140, 127 и 14
Найти высоту треугольника со сторонами 65, 36 и 31
Найти высоту треугольника со сторонами 133, 104 и 75