Рассчитать высоту треугольника со сторонами 93, 73 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{93 + 73 + 37}{2}} \normalsize = 101.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{101.5(101.5-93)(101.5-73)(101.5-37)}}{73}\normalsize = 34.5026066}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{101.5(101.5-93)(101.5-73)(101.5-37)}}{93}\normalsize = 27.0826912}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{101.5(101.5-93)(101.5-73)(101.5-37)}}{37}\normalsize = 68.0727104}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 93, 73 и 37 равна 34.5026066
Высота треугольника опущенная с вершины A на сторону BC со сторонами 93, 73 и 37 равна 27.0826912
Высота треугольника опущенная с вершины C на сторону AB со сторонами 93, 73 и 37 равна 68.0727104
Ссылка на результат
?n1=93&n2=73&n3=37
Найти высоту треугольника со сторонами 82, 70 и 49
Найти высоту треугольника со сторонами 144, 111 и 65
Найти высоту треугольника со сторонами 106, 79 и 28
Найти высоту треугольника со сторонами 136, 84 и 82
Найти высоту треугольника со сторонами 142, 134 и 48
Найти высоту треугольника со сторонами 75, 52 и 49
Найти высоту треугольника со сторонами 144, 111 и 65
Найти высоту треугольника со сторонами 106, 79 и 28
Найти высоту треугольника со сторонами 136, 84 и 82
Найти высоту треугольника со сторонами 142, 134 и 48
Найти высоту треугольника со сторонами 75, 52 и 49