Рассчитать высоту треугольника со сторонами 93, 75 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{93 + 75 + 67}{2}} \normalsize = 117.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117.5(117.5-93)(117.5-75)(117.5-67)}}{75}\normalsize = 66.2843286}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117.5(117.5-93)(117.5-75)(117.5-67)}}{93}\normalsize = 53.4551037}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117.5(117.5-93)(117.5-75)(117.5-67)}}{67}\normalsize = 74.1988753}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 93, 75 и 67 равна 66.2843286
Высота треугольника опущенная с вершины A на сторону BC со сторонами 93, 75 и 67 равна 53.4551037
Высота треугольника опущенная с вершины C на сторону AB со сторонами 93, 75 и 67 равна 74.1988753
Ссылка на результат
?n1=93&n2=75&n3=67
Найти высоту треугольника со сторонами 89, 54 и 54
Найти высоту треугольника со сторонами 94, 64 и 48
Найти высоту треугольника со сторонами 130, 119 и 46
Найти высоту треугольника со сторонами 88, 75 и 35
Найти высоту треугольника со сторонами 100, 82 и 61
Найти высоту треугольника со сторонами 128, 115 и 47
Найти высоту треугольника со сторонами 94, 64 и 48
Найти высоту треугольника со сторонами 130, 119 и 46
Найти высоту треугольника со сторонами 88, 75 и 35
Найти высоту треугольника со сторонами 100, 82 и 61
Найти высоту треугольника со сторонами 128, 115 и 47