Рассчитать высоту треугольника со сторонами 93, 86 и 75
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{93 + 86 + 75}{2}} \normalsize = 127}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{127(127-93)(127-86)(127-75)}}{86}\normalsize = 70.5612821}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{127(127-93)(127-86)(127-75)}}{93}\normalsize = 65.2502179}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{127(127-93)(127-86)(127-75)}}{75}\normalsize = 80.9102702}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 93, 86 и 75 равна 70.5612821
Высота треугольника опущенная с вершины A на сторону BC со сторонами 93, 86 и 75 равна 65.2502179
Высота треугольника опущенная с вершины C на сторону AB со сторонами 93, 86 и 75 равна 80.9102702
Ссылка на результат
?n1=93&n2=86&n3=75
Найти высоту треугольника со сторонами 147, 115 и 35
Найти высоту треугольника со сторонами 126, 68 и 60
Найти высоту треугольника со сторонами 150, 130 и 35
Найти высоту треугольника со сторонами 126, 104 и 39
Найти высоту треугольника со сторонами 142, 127 и 38
Найти высоту треугольника со сторонами 24, 17 и 9
Найти высоту треугольника со сторонами 126, 68 и 60
Найти высоту треугольника со сторонами 150, 130 и 35
Найти высоту треугольника со сторонами 126, 104 и 39
Найти высоту треугольника со сторонами 142, 127 и 38
Найти высоту треугольника со сторонами 24, 17 и 9