Рассчитать высоту треугольника со сторонами 93, 87 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{93 + 87 + 66}{2}} \normalsize = 123}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{123(123-93)(123-87)(123-66)}}{87}\normalsize = 63.2575845}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{123(123-93)(123-87)(123-66)}}{93}\normalsize = 59.17645}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{123(123-93)(123-87)(123-66)}}{66}\normalsize = 83.3849978}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 93, 87 и 66 равна 63.2575845
Высота треугольника опущенная с вершины A на сторону BC со сторонами 93, 87 и 66 равна 59.17645
Высота треугольника опущенная с вершины C на сторону AB со сторонами 93, 87 и 66 равна 83.3849978
Ссылка на результат
?n1=93&n2=87&n3=66
Найти высоту треугольника со сторонами 146, 134 и 64
Найти высоту треугольника со сторонами 127, 106 и 41
Найти высоту треугольника со сторонами 131, 127 и 84
Найти высоту треугольника со сторонами 43, 28 и 24
Найти высоту треугольника со сторонами 118, 114 и 27
Найти высоту треугольника со сторонами 123, 111 и 110
Найти высоту треугольника со сторонами 127, 106 и 41
Найти высоту треугольника со сторонами 131, 127 и 84
Найти высоту треугольника со сторонами 43, 28 и 24
Найти высоту треугольника со сторонами 118, 114 и 27
Найти высоту треугольника со сторонами 123, 111 и 110