Рассчитать высоту треугольника со сторонами 93, 89 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{93 + 89 + 69}{2}} \normalsize = 125.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{125.5(125.5-93)(125.5-89)(125.5-69)}}{89}\normalsize = 65.1739718}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{125.5(125.5-93)(125.5-89)(125.5-69)}}{93}\normalsize = 62.3707902}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{125.5(125.5-93)(125.5-89)(125.5-69)}}{69}\normalsize = 84.0649782}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 93, 89 и 69 равна 65.1739718
Высота треугольника опущенная с вершины A на сторону BC со сторонами 93, 89 и 69 равна 62.3707902
Высота треугольника опущенная с вершины C на сторону AB со сторонами 93, 89 и 69 равна 84.0649782
Ссылка на результат
?n1=93&n2=89&n3=69
Найти высоту треугольника со сторонами 140, 98 и 94
Найти высоту треугольника со сторонами 132, 131 и 106
Найти высоту треугольника со сторонами 131, 120 и 79
Найти высоту треугольника со сторонами 123, 80 и 62
Найти высоту треугольника со сторонами 142, 122 и 116
Найти высоту треугольника со сторонами 135, 100 и 68
Найти высоту треугольника со сторонами 132, 131 и 106
Найти высоту треугольника со сторонами 131, 120 и 79
Найти высоту треугольника со сторонами 123, 80 и 62
Найти высоту треугольника со сторонами 142, 122 и 116
Найти высоту треугольника со сторонами 135, 100 и 68