Рассчитать высоту треугольника со сторонами 94, 50 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{94 + 50 + 50}{2}} \normalsize = 97}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{97(97-94)(97-50)(97-50)}}{50}\normalsize = 32.0703976}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{97(97-94)(97-50)(97-50)}}{94}\normalsize = 17.0587221}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{97(97-94)(97-50)(97-50)}}{50}\normalsize = 32.0703976}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 94, 50 и 50 равна 32.0703976
Высота треугольника опущенная с вершины A на сторону BC со сторонами 94, 50 и 50 равна 17.0587221
Высота треугольника опущенная с вершины C на сторону AB со сторонами 94, 50 и 50 равна 32.0703976
Ссылка на результат
?n1=94&n2=50&n3=50
Найти высоту треугольника со сторонами 102, 93 и 52
Найти высоту треугольника со сторонами 138, 100 и 70
Найти высоту треугольника со сторонами 110, 99 и 17
Найти высоту треугольника со сторонами 88, 88 и 74
Найти высоту треугольника со сторонами 130, 128 и 69
Найти высоту треугольника со сторонами 123, 101 и 66
Найти высоту треугольника со сторонами 138, 100 и 70
Найти высоту треугольника со сторонами 110, 99 и 17
Найти высоту треугольника со сторонами 88, 88 и 74
Найти высоту треугольника со сторонами 130, 128 и 69
Найти высоту треугольника со сторонами 123, 101 и 66