Рассчитать высоту треугольника со сторонами 94, 59 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{94 + 59 + 37}{2}} \normalsize = 95}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{95(95-94)(95-59)(95-37)}}{59}\normalsize = 15.0974998}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{95(95-94)(95-59)(95-37)}}{94}\normalsize = 9.47609033}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{95(95-94)(95-59)(95-37)}}{37}\normalsize = 24.0743916}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 94, 59 и 37 равна 15.0974998
Высота треугольника опущенная с вершины A на сторону BC со сторонами 94, 59 и 37 равна 9.47609033
Высота треугольника опущенная с вершины C на сторону AB со сторонами 94, 59 и 37 равна 24.0743916
Ссылка на результат
?n1=94&n2=59&n3=37
Найти высоту треугольника со сторонами 109, 103 и 37
Найти высоту треугольника со сторонами 112, 81 и 81
Найти высоту треугольника со сторонами 91, 79 и 68
Найти высоту треугольника со сторонами 136, 103 и 48
Найти высоту треугольника со сторонами 132, 129 и 58
Найти высоту треугольника со сторонами 92, 92 и 9
Найти высоту треугольника со сторонами 112, 81 и 81
Найти высоту треугольника со сторонами 91, 79 и 68
Найти высоту треугольника со сторонами 136, 103 и 48
Найти высоту треугольника со сторонами 132, 129 и 58
Найти высоту треугольника со сторонами 92, 92 и 9