Рассчитать высоту треугольника со сторонами 94, 84 и 12

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{94 + 84 + 12}{2}} \normalsize = 95}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{95(95-94)(95-84)(95-12)}}{84}\normalsize = 7.01209677}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{95(95-94)(95-84)(95-12)}}{94}\normalsize = 6.26612903}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{95(95-94)(95-84)(95-12)}}{12}\normalsize = 49.0846774}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 94, 84 и 12 равна 7.01209677
Высота треугольника опущенная с вершины A на сторону BC со сторонами 94, 84 и 12 равна 6.26612903
Высота треугольника опущенная с вершины C на сторону AB со сторонами 94, 84 и 12 равна 49.0846774
Ссылка на результат
?n1=94&n2=84&n3=12