Рассчитать высоту треугольника со сторонами 94, 87 и 20
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{94 + 87 + 20}{2}} \normalsize = 100.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{100.5(100.5-94)(100.5-87)(100.5-20)}}{87}\normalsize = 19.3693603}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{100.5(100.5-94)(100.5-87)(100.5-20)}}{94}\normalsize = 17.9269611}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{100.5(100.5-94)(100.5-87)(100.5-20)}}{20}\normalsize = 84.2567171}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 94, 87 и 20 равна 19.3693603
Высота треугольника опущенная с вершины A на сторону BC со сторонами 94, 87 и 20 равна 17.9269611
Высота треугольника опущенная с вершины C на сторону AB со сторонами 94, 87 и 20 равна 84.2567171
Ссылка на результат
?n1=94&n2=87&n3=20
Найти высоту треугольника со сторонами 117, 94 и 70
Найти высоту треугольника со сторонами 124, 95 и 68
Найти высоту треугольника со сторонами 141, 110 и 93
Найти высоту треугольника со сторонами 141, 83 и 64
Найти высоту треугольника со сторонами 63, 52 и 36
Найти высоту треугольника со сторонами 112, 110 и 68
Найти высоту треугольника со сторонами 124, 95 и 68
Найти высоту треугольника со сторонами 141, 110 и 93
Найти высоту треугольника со сторонами 141, 83 и 64
Найти высоту треугольника со сторонами 63, 52 и 36
Найти высоту треугольника со сторонами 112, 110 и 68