Рассчитать высоту треугольника со сторонами 94, 90 и 11
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{94 + 90 + 11}{2}} \normalsize = 97.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{97.5(97.5-94)(97.5-90)(97.5-11)}}{90}\normalsize = 10.455926}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{97.5(97.5-94)(97.5-90)(97.5-11)}}{94}\normalsize = 10.010993}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{97.5(97.5-94)(97.5-90)(97.5-11)}}{11}\normalsize = 85.5484856}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 94, 90 и 11 равна 10.455926
Высота треугольника опущенная с вершины A на сторону BC со сторонами 94, 90 и 11 равна 10.010993
Высота треугольника опущенная с вершины C на сторону AB со сторонами 94, 90 и 11 равна 85.5484856
Ссылка на результат
?n1=94&n2=90&n3=11
Найти высоту треугольника со сторонами 129, 106 и 98
Найти высоту треугольника со сторонами 125, 101 и 63
Найти высоту треугольника со сторонами 68, 67 и 7
Найти высоту треугольника со сторонами 104, 103 и 41
Найти высоту треугольника со сторонами 122, 116 и 27
Найти высоту треугольника со сторонами 144, 136 и 73
Найти высоту треугольника со сторонами 125, 101 и 63
Найти высоту треугольника со сторонами 68, 67 и 7
Найти высоту треугольника со сторонами 104, 103 и 41
Найти высоту треугольника со сторонами 122, 116 и 27
Найти высоту треугольника со сторонами 144, 136 и 73