Рассчитать высоту треугольника со сторонами 94, 90 и 72

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{94 + 90 + 72}{2}} \normalsize = 128}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{128(128-94)(128-90)(128-72)}}{90}\normalsize = 67.6266293}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{128(128-94)(128-90)(128-72)}}{94}\normalsize = 64.7489004}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{128(128-94)(128-90)(128-72)}}{72}\normalsize = 84.5332866}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 94, 90 и 72 равна 67.6266293
Высота треугольника опущенная с вершины A на сторону BC со сторонами 94, 90 и 72 равна 64.7489004
Высота треугольника опущенная с вершины C на сторону AB со сторонами 94, 90 и 72 равна 84.5332866
Ссылка на результат
?n1=94&n2=90&n3=72