Рассчитать высоту треугольника со сторонами 95, 57 и 49
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{95 + 57 + 49}{2}} \normalsize = 100.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{100.5(100.5-95)(100.5-57)(100.5-49)}}{57}\normalsize = 39.0452096}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{100.5(100.5-95)(100.5-57)(100.5-49)}}{95}\normalsize = 23.4271258}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{100.5(100.5-95)(100.5-57)(100.5-49)}}{49}\normalsize = 45.4199377}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 95, 57 и 49 равна 39.0452096
Высота треугольника опущенная с вершины A на сторону BC со сторонами 95, 57 и 49 равна 23.4271258
Высота треугольника опущенная с вершины C на сторону AB со сторонами 95, 57 и 49 равна 45.4199377
Ссылка на результат
?n1=95&n2=57&n3=49
Найти высоту треугольника со сторонами 114, 86 и 81
Найти высоту треугольника со сторонами 137, 123 и 110
Найти высоту треугольника со сторонами 26, 22 и 17
Найти высоту треугольника со сторонами 79, 78 и 38
Найти высоту треугольника со сторонами 99, 60 и 50
Найти высоту треугольника со сторонами 86, 75 и 63
Найти высоту треугольника со сторонами 137, 123 и 110
Найти высоту треугольника со сторонами 26, 22 и 17
Найти высоту треугольника со сторонами 79, 78 и 38
Найти высоту треугольника со сторонами 99, 60 и 50
Найти высоту треугольника со сторонами 86, 75 и 63