Рассчитать высоту треугольника со сторонами 95, 63 и 44
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{95 + 63 + 44}{2}} \normalsize = 101}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{101(101-95)(101-63)(101-44)}}{63}\normalsize = 36.3709784}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{101(101-95)(101-63)(101-44)}}{95}\normalsize = 24.1197015}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{101(101-95)(101-63)(101-44)}}{44}\normalsize = 52.0766282}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 95, 63 и 44 равна 36.3709784
Высота треугольника опущенная с вершины A на сторону BC со сторонами 95, 63 и 44 равна 24.1197015
Высота треугольника опущенная с вершины C на сторону AB со сторонами 95, 63 и 44 равна 52.0766282
Ссылка на результат
?n1=95&n2=63&n3=44
Найти высоту треугольника со сторонами 142, 132 и 48
Найти высоту треугольника со сторонами 124, 123 и 104
Найти высоту треугольника со сторонами 146, 138 и 123
Найти высоту треугольника со сторонами 80, 73 и 28
Найти высоту треугольника со сторонами 143, 139 и 83
Найти высоту треугольника со сторонами 92, 78 и 73
Найти высоту треугольника со сторонами 124, 123 и 104
Найти высоту треугольника со сторонами 146, 138 и 123
Найти высоту треугольника со сторонами 80, 73 и 28
Найти высоту треугольника со сторонами 143, 139 и 83
Найти высоту треугольника со сторонами 92, 78 и 73