Рассчитать высоту треугольника со сторонами 95, 88 и 81
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{95 + 88 + 81}{2}} \normalsize = 132}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132(132-95)(132-88)(132-81)}}{88}\normalsize = 75.2396172}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132(132-95)(132-88)(132-81)}}{95}\normalsize = 69.6956454}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132(132-95)(132-88)(132-81)}}{81}\normalsize = 81.7418064}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 95, 88 и 81 равна 75.2396172
Высота треугольника опущенная с вершины A на сторону BC со сторонами 95, 88 и 81 равна 69.6956454
Высота треугольника опущенная с вершины C на сторону AB со сторонами 95, 88 и 81 равна 81.7418064
Ссылка на результат
?n1=95&n2=88&n3=81
Найти высоту треугольника со сторонами 150, 103 и 49
Найти высоту треугольника со сторонами 127, 123 и 42
Найти высоту треугольника со сторонами 119, 119 и 35
Найти высоту треугольника со сторонами 147, 146 и 141
Найти высоту треугольника со сторонами 120, 74 и 74
Найти высоту треугольника со сторонами 129, 98 и 43
Найти высоту треугольника со сторонами 127, 123 и 42
Найти высоту треугольника со сторонами 119, 119 и 35
Найти высоту треугольника со сторонами 147, 146 и 141
Найти высоту треугольника со сторонами 120, 74 и 74
Найти высоту треугольника со сторонами 129, 98 и 43