Рассчитать высоту треугольника со сторонами 95, 93 и 73
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{95 + 93 + 73}{2}} \normalsize = 130.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{130.5(130.5-95)(130.5-93)(130.5-73)}}{93}\normalsize = 67.9698068}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{130.5(130.5-95)(130.5-93)(130.5-73)}}{95}\normalsize = 66.5388635}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{130.5(130.5-95)(130.5-93)(130.5-73)}}{73}\normalsize = 86.5916717}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 95, 93 и 73 равна 67.9698068
Высота треугольника опущенная с вершины A на сторону BC со сторонами 95, 93 и 73 равна 66.5388635
Высота треугольника опущенная с вершины C на сторону AB со сторонами 95, 93 и 73 равна 86.5916717
Ссылка на результат
?n1=95&n2=93&n3=73
Найти высоту треугольника со сторонами 114, 114 и 7
Найти высоту треугольника со сторонами 138, 122 и 47
Найти высоту треугольника со сторонами 81, 73 и 29
Найти высоту треугольника со сторонами 82, 80 и 32
Найти высоту треугольника со сторонами 122, 115 и 26
Найти высоту треугольника со сторонами 145, 110 и 109
Найти высоту треугольника со сторонами 138, 122 и 47
Найти высоту треугольника со сторонами 81, 73 и 29
Найти высоту треугольника со сторонами 82, 80 и 32
Найти высоту треугольника со сторонами 122, 115 и 26
Найти высоту треугольника со сторонами 145, 110 и 109