Рассчитать высоту треугольника со сторонами 95, 95 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{95 + 95 + 34}{2}} \normalsize = 112}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112(112-95)(112-95)(112-34)}}{95}\normalsize = 33.451194}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112(112-95)(112-95)(112-34)}}{95}\normalsize = 33.451194}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112(112-95)(112-95)(112-34)}}{34}\normalsize = 93.4665716}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 95, 95 и 34 равна 33.451194
Высота треугольника опущенная с вершины A на сторону BC со сторонами 95, 95 и 34 равна 33.451194
Высота треугольника опущенная с вершины C на сторону AB со сторонами 95, 95 и 34 равна 93.4665716
Ссылка на результат
?n1=95&n2=95&n3=34
Найти высоту треугольника со сторонами 101, 93 и 84
Найти высоту треугольника со сторонами 66, 48 и 41
Найти высоту треугольника со сторонами 141, 125 и 94
Найти высоту треугольника со сторонами 90, 74 и 37
Найти высоту треугольника со сторонами 91, 79 и 59
Найти высоту треугольника со сторонами 113, 70 и 56
Найти высоту треугольника со сторонами 66, 48 и 41
Найти высоту треугольника со сторонами 141, 125 и 94
Найти высоту треугольника со сторонами 90, 74 и 37
Найти высоту треугольника со сторонами 91, 79 и 59
Найти высоту треугольника со сторонами 113, 70 и 56