Рассчитать высоту треугольника со сторонами 96, 71 и 31
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 71 + 31}{2}} \normalsize = 99}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{99(99-96)(99-71)(99-31)}}{71}\normalsize = 21.1827989}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{99(99-96)(99-71)(99-31)}}{96}\normalsize = 15.666445}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{99(99-96)(99-71)(99-31)}}{31}\normalsize = 48.5154427}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 71 и 31 равна 21.1827989
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 71 и 31 равна 15.666445
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 71 и 31 равна 48.5154427
Ссылка на результат
?n1=96&n2=71&n3=31
Найти высоту треугольника со сторонами 60, 47 и 19
Найти высоту треугольника со сторонами 130, 122 и 37
Найти высоту треугольника со сторонами 146, 134 и 74
Найти высоту треугольника со сторонами 133, 121 и 41
Найти высоту треугольника со сторонами 143, 123 и 64
Найти высоту треугольника со сторонами 82, 63 и 53
Найти высоту треугольника со сторонами 130, 122 и 37
Найти высоту треугольника со сторонами 146, 134 и 74
Найти высоту треугольника со сторонами 133, 121 и 41
Найти высоту треугольника со сторонами 143, 123 и 64
Найти высоту треугольника со сторонами 82, 63 и 53