Рассчитать высоту треугольника со сторонами 96, 90 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 90 + 62}{2}} \normalsize = 124}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{124(124-96)(124-90)(124-62)}}{90}\normalsize = 60.1191245}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{124(124-96)(124-90)(124-62)}}{96}\normalsize = 56.3616793}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{124(124-96)(124-90)(124-62)}}{62}\normalsize = 87.2696969}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 90 и 62 равна 60.1191245
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 90 и 62 равна 56.3616793
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 90 и 62 равна 87.2696969
Ссылка на результат
?n1=96&n2=90&n3=62
Найти высоту треугольника со сторонами 118, 95 и 82
Найти высоту треугольника со сторонами 120, 98 и 79
Найти высоту треугольника со сторонами 121, 118 и 63
Найти высоту треугольника со сторонами 76, 72 и 68
Найти высоту треугольника со сторонами 113, 104 и 17
Найти высоту треугольника со сторонами 124, 113 и 14
Найти высоту треугольника со сторонами 120, 98 и 79
Найти высоту треугольника со сторонами 121, 118 и 63
Найти высоту треугольника со сторонами 76, 72 и 68
Найти высоту треугольника со сторонами 113, 104 и 17
Найти высоту треугольника со сторонами 124, 113 и 14