Рассчитать высоту треугольника со сторонами 96, 93 и 76
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{96 + 93 + 76}{2}} \normalsize = 132.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132.5(132.5-96)(132.5-93)(132.5-76)}}{93}\normalsize = 70.6519561}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132.5(132.5-96)(132.5-93)(132.5-76)}}{96}\normalsize = 68.4440824}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132.5(132.5-96)(132.5-93)(132.5-76)}}{76}\normalsize = 86.4556831}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 96, 93 и 76 равна 70.6519561
Высота треугольника опущенная с вершины A на сторону BC со сторонами 96, 93 и 76 равна 68.4440824
Высота треугольника опущенная с вершины C на сторону AB со сторонами 96, 93 и 76 равна 86.4556831
Ссылка на результат
?n1=96&n2=93&n3=76
Найти высоту треугольника со сторонами 88, 85 и 6
Найти высоту треугольника со сторонами 127, 113 и 80
Найти высоту треугольника со сторонами 78, 57 и 50
Найти высоту треугольника со сторонами 134, 126 и 22
Найти высоту треугольника со сторонами 41, 35 и 18
Найти высоту треугольника со сторонами 64, 49 и 49
Найти высоту треугольника со сторонами 127, 113 и 80
Найти высоту треугольника со сторонами 78, 57 и 50
Найти высоту треугольника со сторонами 134, 126 и 22
Найти высоту треугольника со сторонами 41, 35 и 18
Найти высоту треугольника со сторонами 64, 49 и 49