Рассчитать высоту треугольника со сторонами 97, 55 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 55 + 50}{2}} \normalsize = 101}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{101(101-97)(101-55)(101-50)}}{55}\normalsize = 35.4015268}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{101(101-97)(101-55)(101-50)}}{97}\normalsize = 20.0730307}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{101(101-97)(101-55)(101-50)}}{50}\normalsize = 38.9416795}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 55 и 50 равна 35.4015268
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 55 и 50 равна 20.0730307
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 55 и 50 равна 38.9416795
Ссылка на результат
?n1=97&n2=55&n3=50
Найти высоту треугольника со сторонами 150, 147 и 66
Найти высоту треугольника со сторонами 107, 100 и 59
Найти высоту треугольника со сторонами 106, 96 и 87
Найти высоту треугольника со сторонами 133, 90 и 74
Найти высоту треугольника со сторонами 77, 73 и 18
Найти высоту треугольника со сторонами 84, 66 и 42
Найти высоту треугольника со сторонами 107, 100 и 59
Найти высоту треугольника со сторонами 106, 96 и 87
Найти высоту треугольника со сторонами 133, 90 и 74
Найти высоту треугольника со сторонами 77, 73 и 18
Найти высоту треугольника со сторонами 84, 66 и 42