Рассчитать высоту треугольника со сторонами 97, 68 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 68 + 42}{2}} \normalsize = 103.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{103.5(103.5-97)(103.5-68)(103.5-42)}}{68}\normalsize = 35.6450863}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{103.5(103.5-97)(103.5-68)(103.5-42)}}{97}\normalsize = 24.9883079}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{103.5(103.5-97)(103.5-68)(103.5-42)}}{42}\normalsize = 57.7110921}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 68 и 42 равна 35.6450863
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 68 и 42 равна 24.9883079
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 68 и 42 равна 57.7110921
Ссылка на результат
?n1=97&n2=68&n3=42
Найти высоту треугольника со сторонами 124, 111 и 42
Найти высоту треугольника со сторонами 149, 118 и 91
Найти высоту треугольника со сторонами 84, 80 и 30
Найти высоту треугольника со сторонами 99, 95 и 51
Найти высоту треугольника со сторонами 149, 123 и 71
Найти высоту треугольника со сторонами 85, 74 и 62
Найти высоту треугольника со сторонами 149, 118 и 91
Найти высоту треугольника со сторонами 84, 80 и 30
Найти высоту треугольника со сторонами 99, 95 и 51
Найти высоту треугольника со сторонами 149, 123 и 71
Найти высоту треугольника со сторонами 85, 74 и 62