Рассчитать высоту треугольника со сторонами 97, 70 и 70
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 70 + 70}{2}} \normalsize = 118.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118.5(118.5-97)(118.5-70)(118.5-70)}}{70}\normalsize = 69.9442632}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118.5(118.5-97)(118.5-70)(118.5-70)}}{97}\normalsize = 50.4752415}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118.5(118.5-97)(118.5-70)(118.5-70)}}{70}\normalsize = 69.9442632}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 70 и 70 равна 69.9442632
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 70 и 70 равна 50.4752415
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 70 и 70 равна 69.9442632
Ссылка на результат
?n1=97&n2=70&n3=70
Найти высоту треугольника со сторонами 114, 89 и 71
Найти высоту треугольника со сторонами 138, 103 и 91
Найти высоту треугольника со сторонами 94, 74 и 70
Найти высоту треугольника со сторонами 79, 76 и 18
Найти высоту треугольника со сторонами 107, 80 и 28
Найти высоту треугольника со сторонами 73, 52 и 25
Найти высоту треугольника со сторонами 138, 103 и 91
Найти высоту треугольника со сторонами 94, 74 и 70
Найти высоту треугольника со сторонами 79, 76 и 18
Найти высоту треугольника со сторонами 107, 80 и 28
Найти высоту треугольника со сторонами 73, 52 и 25