Рассчитать высоту треугольника со сторонами 97, 83 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 83 + 54}{2}} \normalsize = 117}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{117(117-97)(117-83)(117-54)}}{83}\normalsize = 53.9472816}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{117(117-97)(117-83)(117-54)}}{97}\normalsize = 46.161076}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{117(117-97)(117-83)(117-54)}}{54}\normalsize = 82.9189698}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 83 и 54 равна 53.9472816
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 83 и 54 равна 46.161076
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 83 и 54 равна 82.9189698
Ссылка на результат
?n1=97&n2=83&n3=54
Найти высоту треугольника со сторонами 140, 137 и 127
Найти высоту треугольника со сторонами 58, 57 и 15
Найти высоту треугольника со сторонами 107, 88 и 27
Найти высоту треугольника со сторонами 91, 61 и 60
Найти высоту треугольника со сторонами 142, 126 и 17
Найти высоту треугольника со сторонами 144, 108 и 54
Найти высоту треугольника со сторонами 58, 57 и 15
Найти высоту треугольника со сторонами 107, 88 и 27
Найти высоту треугольника со сторонами 91, 61 и 60
Найти высоту треугольника со сторонами 142, 126 и 17
Найти высоту треугольника со сторонами 144, 108 и 54