Рассчитать высоту треугольника со сторонами 97, 84 и 77
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 84 + 77}{2}} \normalsize = 129}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129(129-97)(129-84)(129-77)}}{84}\normalsize = 73.9994484}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129(129-97)(129-84)(129-77)}}{97}\normalsize = 64.0819966}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129(129-97)(129-84)(129-77)}}{77}\normalsize = 80.726671}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 84 и 77 равна 73.9994484
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 84 и 77 равна 64.0819966
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 84 и 77 равна 80.726671
Ссылка на результат
?n1=97&n2=84&n3=77
Найти высоту треугольника со сторонами 134, 97 и 59
Найти высоту треугольника со сторонами 146, 84 и 74
Найти высоту треугольника со сторонами 42, 33 и 16
Найти высоту треугольника со сторонами 142, 114 и 37
Найти высоту треугольника со сторонами 131, 129 и 71
Найти высоту треугольника со сторонами 126, 118 и 21
Найти высоту треугольника со сторонами 146, 84 и 74
Найти высоту треугольника со сторонами 42, 33 и 16
Найти высоту треугольника со сторонами 142, 114 и 37
Найти высоту треугольника со сторонами 131, 129 и 71
Найти высоту треугольника со сторонами 126, 118 и 21