Рассчитать высоту треугольника со сторонами 97, 86 и 69
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 86 + 69}{2}} \normalsize = 126}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{126(126-97)(126-86)(126-69)}}{86}\normalsize = 67.1248363}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{126(126-97)(126-86)(126-69)}}{97}\normalsize = 59.5127414}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{126(126-97)(126-86)(126-69)}}{69}\normalsize = 83.6628394}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 86 и 69 равна 67.1248363
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 86 и 69 равна 59.5127414
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 86 и 69 равна 83.6628394
Ссылка на результат
?n1=97&n2=86&n3=69
Найти высоту треугольника со сторонами 137, 136 и 27
Найти высоту треугольника со сторонами 109, 84 и 84
Найти высоту треугольника со сторонами 83, 61 и 41
Найти высоту треугольника со сторонами 42, 29 и 23
Найти высоту треугольника со сторонами 142, 100 и 80
Найти высоту треугольника со сторонами 96, 90 и 51
Найти высоту треугольника со сторонами 109, 84 и 84
Найти высоту треугольника со сторонами 83, 61 и 41
Найти высоту треугольника со сторонами 42, 29 и 23
Найти высоту треугольника со сторонами 142, 100 и 80
Найти высоту треугольника со сторонами 96, 90 и 51