Рассчитать высоту треугольника со сторонами 97, 89 и 68
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 89 + 68}{2}} \normalsize = 127}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{127(127-97)(127-89)(127-68)}}{89}\normalsize = 65.6780547}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{127(127-97)(127-89)(127-68)}}{97}\normalsize = 60.2613079}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{127(127-97)(127-89)(127-68)}}{68}\normalsize = 85.9609833}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 89 и 68 равна 65.6780547
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 89 и 68 равна 60.2613079
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 89 и 68 равна 85.9609833
Ссылка на результат
?n1=97&n2=89&n3=68
Найти высоту треугольника со сторонами 37, 26 и 21
Найти высоту треугольника со сторонами 146, 139 и 65
Найти высоту треугольника со сторонами 130, 125 и 78
Найти высоту треугольника со сторонами 87, 85 и 28
Найти высоту треугольника со сторонами 105, 93 и 37
Найти высоту треугольника со сторонами 115, 91 и 32
Найти высоту треугольника со сторонами 146, 139 и 65
Найти высоту треугольника со сторонами 130, 125 и 78
Найти высоту треугольника со сторонами 87, 85 и 28
Найти высоту треугольника со сторонами 105, 93 и 37
Найти высоту треугольника со сторонами 115, 91 и 32