Рассчитать высоту треугольника со сторонами 97, 92 и 7
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 92 + 7}{2}} \normalsize = 98}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{98(98-97)(98-92)(98-7)}}{92}\normalsize = 5.02865137}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{98(98-97)(98-92)(98-7)}}{97}\normalsize = 4.76944254}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{98(98-97)(98-92)(98-7)}}{7}\normalsize = 66.0908466}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 92 и 7 равна 5.02865137
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 92 и 7 равна 4.76944254
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 92 и 7 равна 66.0908466
Ссылка на результат
?n1=97&n2=92&n3=7
Найти высоту треугольника со сторонами 115, 98 и 28
Найти высоту треугольника со сторонами 140, 100 и 97
Найти высоту треугольника со сторонами 149, 87 и 67
Найти высоту треугольника со сторонами 143, 127 и 69
Найти высоту треугольника со сторонами 131, 110 и 107
Найти высоту треугольника со сторонами 102, 102 и 7
Найти высоту треугольника со сторонами 140, 100 и 97
Найти высоту треугольника со сторонами 149, 87 и 67
Найти высоту треугольника со сторонами 143, 127 и 69
Найти высоту треугольника со сторонами 131, 110 и 107
Найти высоту треугольника со сторонами 102, 102 и 7