Рассчитать высоту треугольника со сторонами 97, 93 и 8
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 93 + 8}{2}} \normalsize = 99}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{99(99-97)(99-93)(99-8)}}{93}\normalsize = 7.07092065}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{99(99-97)(99-93)(99-8)}}{97}\normalsize = 6.77933629}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{99(99-97)(99-93)(99-8)}}{8}\normalsize = 82.1994526}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 93 и 8 равна 7.07092065
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 93 и 8 равна 6.77933629
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 93 и 8 равна 82.1994526
Ссылка на результат
?n1=97&n2=93&n3=8
Найти высоту треугольника со сторонами 59, 46 и 26
Найти высоту треугольника со сторонами 119, 111 и 45
Найти высоту треугольника со сторонами 97, 73 и 44
Найти высоту треугольника со сторонами 115, 75 и 59
Найти высоту треугольника со сторонами 119, 95 и 56
Найти высоту треугольника со сторонами 123, 93 и 35
Найти высоту треугольника со сторонами 119, 111 и 45
Найти высоту треугольника со сторонами 97, 73 и 44
Найти высоту треугольника со сторонами 115, 75 и 59
Найти высоту треугольника со сторонами 119, 95 и 56
Найти высоту треугольника со сторонами 123, 93 и 35