Рассчитать высоту треугольника со сторонами 97, 94 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 94 + 30}{2}} \normalsize = 110.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{110.5(110.5-97)(110.5-94)(110.5-30)}}{94}\normalsize = 29.9495346}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{110.5(110.5-97)(110.5-94)(110.5-30)}}{97}\normalsize = 29.0232603}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{110.5(110.5-97)(110.5-94)(110.5-30)}}{30}\normalsize = 93.841875}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 94 и 30 равна 29.9495346
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 94 и 30 равна 29.0232603
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 94 и 30 равна 93.841875
Ссылка на результат
?n1=97&n2=94&n3=30
Найти высоту треугольника со сторонами 103, 91 и 59
Найти высоту треугольника со сторонами 105, 70 и 67
Найти высоту треугольника со сторонами 149, 136 и 63
Найти высоту треугольника со сторонами 135, 118 и 92
Найти высоту треугольника со сторонами 91, 76 и 30
Найти высоту треугольника со сторонами 135, 130 и 127
Найти высоту треугольника со сторонами 105, 70 и 67
Найти высоту треугольника со сторонами 149, 136 и 63
Найти высоту треугольника со сторонами 135, 118 и 92
Найти высоту треугольника со сторонами 91, 76 и 30
Найти высоту треугольника со сторонами 135, 130 и 127