Рассчитать высоту треугольника со сторонами 97, 95 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 95 + 26}{2}} \normalsize = 109}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{109(109-97)(109-95)(109-26)}}{95}\normalsize = 25.9545394}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{109(109-97)(109-95)(109-26)}}{97}\normalsize = 25.4193943}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{109(109-97)(109-95)(109-26)}}{26}\normalsize = 94.833894}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 95 и 26 равна 25.9545394
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 95 и 26 равна 25.4193943
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 95 и 26 равна 94.833894
Ссылка на результат
?n1=97&n2=95&n3=26
Найти высоту треугольника со сторонами 133, 111 и 95
Найти высоту треугольника со сторонами 117, 90 и 64
Найти высоту треугольника со сторонами 76, 72 и 33
Найти высоту треугольника со сторонами 74, 74 и 66
Найти высоту треугольника со сторонами 80, 66 и 63
Найти высоту треугольника со сторонами 102, 59 и 45
Найти высоту треугольника со сторонами 117, 90 и 64
Найти высоту треугольника со сторонами 76, 72 и 33
Найти высоту треугольника со сторонами 74, 74 и 66
Найти высоту треугольника со сторонами 80, 66 и 63
Найти высоту треугольника со сторонами 102, 59 и 45