Рассчитать высоту треугольника со сторонами 97, 95 и 73
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{97 + 95 + 73}{2}} \normalsize = 132.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132.5(132.5-97)(132.5-95)(132.5-73)}}{95}\normalsize = 68.2028657}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132.5(132.5-97)(132.5-95)(132.5-73)}}{97}\normalsize = 66.796621}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132.5(132.5-97)(132.5-95)(132.5-73)}}{73}\normalsize = 88.757154}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 97, 95 и 73 равна 68.2028657
Высота треугольника опущенная с вершины A на сторону BC со сторонами 97, 95 и 73 равна 66.796621
Высота треугольника опущенная с вершины C на сторону AB со сторонами 97, 95 и 73 равна 88.757154
Ссылка на результат
?n1=97&n2=95&n3=73
Найти высоту треугольника со сторонами 123, 103 и 98
Найти высоту треугольника со сторонами 116, 97 и 92
Найти высоту треугольника со сторонами 101, 90 и 79
Найти высоту треугольника со сторонами 115, 89 и 33
Найти высоту треугольника со сторонами 119, 115 и 59
Найти высоту треугольника со сторонами 135, 127 и 46
Найти высоту треугольника со сторонами 116, 97 и 92
Найти высоту треугольника со сторонами 101, 90 и 79
Найти высоту треугольника со сторонами 115, 89 и 33
Найти высоту треугольника со сторонами 119, 115 и 59
Найти высоту треугольника со сторонами 135, 127 и 46