Рассчитать высоту треугольника со сторонами 98, 55 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{98 + 55 + 46}{2}} \normalsize = 99.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{99.5(99.5-98)(99.5-55)(99.5-46)}}{55}\normalsize = 21.6761113}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{99.5(99.5-98)(99.5-55)(99.5-46)}}{98}\normalsize = 12.1651645}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{99.5(99.5-98)(99.5-55)(99.5-46)}}{46}\normalsize = 25.9170896}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 98, 55 и 46 равна 21.6761113
Высота треугольника опущенная с вершины A на сторону BC со сторонами 98, 55 и 46 равна 12.1651645
Высота треугольника опущенная с вершины C на сторону AB со сторонами 98, 55 и 46 равна 25.9170896
Ссылка на результат
?n1=98&n2=55&n3=46
Найти высоту треугольника со сторонами 120, 73 и 72
Найти высоту треугольника со сторонами 133, 122 и 101
Найти высоту треугольника со сторонами 103, 103 и 20
Найти высоту треугольника со сторонами 113, 109 и 93
Найти высоту треугольника со сторонами 116, 107 и 75
Найти высоту треугольника со сторонами 148, 79 и 75
Найти высоту треугольника со сторонами 133, 122 и 101
Найти высоту треугольника со сторонами 103, 103 и 20
Найти высоту треугольника со сторонами 113, 109 и 93
Найти высоту треугольника со сторонами 116, 107 и 75
Найти высоту треугольника со сторонами 148, 79 и 75