Рассчитать высоту треугольника со сторонами 98, 74 и 53
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{98 + 74 + 53}{2}} \normalsize = 112.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112.5(112.5-98)(112.5-74)(112.5-53)}}{74}\normalsize = 52.2453191}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112.5(112.5-98)(112.5-74)(112.5-53)}}{98}\normalsize = 39.4505471}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112.5(112.5-98)(112.5-74)(112.5-53)}}{53}\normalsize = 72.9462946}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 98, 74 и 53 равна 52.2453191
Высота треугольника опущенная с вершины A на сторону BC со сторонами 98, 74 и 53 равна 39.4505471
Высота треугольника опущенная с вершины C на сторону AB со сторонами 98, 74 и 53 равна 72.9462946
Ссылка на результат
?n1=98&n2=74&n3=53
Найти высоту треугольника со сторонами 148, 121 и 53
Найти высоту треугольника со сторонами 126, 124 и 72
Найти высоту треугольника со сторонами 137, 116 и 96
Найти высоту треугольника со сторонами 92, 82 и 50
Найти высоту треугольника со сторонами 70, 46 и 39
Найти высоту треугольника со сторонами 120, 101 и 52
Найти высоту треугольника со сторонами 126, 124 и 72
Найти высоту треугольника со сторонами 137, 116 и 96
Найти высоту треугольника со сторонами 92, 82 и 50
Найти высоту треугольника со сторонами 70, 46 и 39
Найти высоту треугольника со сторонами 120, 101 и 52