Рассчитать высоту треугольника со сторонами 98, 75 и 44
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{98 + 75 + 44}{2}} \normalsize = 108.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{108.5(108.5-98)(108.5-75)(108.5-44)}}{75}\normalsize = 41.8389245}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{108.5(108.5-98)(108.5-75)(108.5-44)}}{98}\normalsize = 32.019585}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{108.5(108.5-98)(108.5-75)(108.5-44)}}{44}\normalsize = 71.3163485}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 98, 75 и 44 равна 41.8389245
Высота треугольника опущенная с вершины A на сторону BC со сторонами 98, 75 и 44 равна 32.019585
Высота треугольника опущенная с вершины C на сторону AB со сторонами 98, 75 и 44 равна 71.3163485
Ссылка на результат
?n1=98&n2=75&n3=44
Найти высоту треугольника со сторонами 76, 61 и 22
Найти высоту треугольника со сторонами 106, 100 и 12
Найти высоту треугольника со сторонами 134, 104 и 46
Найти высоту треугольника со сторонами 116, 87 и 74
Найти высоту треугольника со сторонами 143, 136 и 16
Найти высоту треугольника со сторонами 149, 124 и 111
Найти высоту треугольника со сторонами 106, 100 и 12
Найти высоту треугольника со сторонами 134, 104 и 46
Найти высоту треугольника со сторонами 116, 87 и 74
Найти высоту треугольника со сторонами 143, 136 и 16
Найти высоту треугольника со сторонами 149, 124 и 111