Рассчитать высоту треугольника со сторонами 98, 98 и 81
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{98 + 98 + 81}{2}} \normalsize = 138.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{138.5(138.5-98)(138.5-98)(138.5-81)}}{98}\normalsize = 73.759464}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{138.5(138.5-98)(138.5-98)(138.5-81)}}{98}\normalsize = 73.759464}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{138.5(138.5-98)(138.5-98)(138.5-81)}}{81}\normalsize = 89.2398454}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 98, 98 и 81 равна 73.759464
Высота треугольника опущенная с вершины A на сторону BC со сторонами 98, 98 и 81 равна 73.759464
Высота треугольника опущенная с вершины C на сторону AB со сторонами 98, 98 и 81 равна 89.2398454
Ссылка на результат
?n1=98&n2=98&n3=81
Найти высоту треугольника со сторонами 104, 91 и 67
Найти высоту треугольника со сторонами 65, 53 и 32
Найти высоту треугольника со сторонами 135, 102 и 34
Найти высоту треугольника со сторонами 103, 80 и 76
Найти высоту треугольника со сторонами 141, 128 и 78
Найти высоту треугольника со сторонами 121, 94 и 28
Найти высоту треугольника со сторонами 65, 53 и 32
Найти высоту треугольника со сторонами 135, 102 и 34
Найти высоту треугольника со сторонами 103, 80 и 76
Найти высоту треугольника со сторонами 141, 128 и 78
Найти высоту треугольника со сторонами 121, 94 и 28