Рассчитать высоту треугольника со сторонами 99, 56 и 55

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{99 + 56 + 55}{2}} \normalsize = 105}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{105(105-99)(105-56)(105-55)}}{56}\normalsize = 44.3705984}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{105(105-99)(105-56)(105-55)}}{99}\normalsize = 25.0985203}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{105(105-99)(105-56)(105-55)}}{55}\normalsize = 45.1773365}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 99, 56 и 55 равна 44.3705984
Высота треугольника опущенная с вершины A на сторону BC со сторонами 99, 56 и 55 равна 25.0985203
Высота треугольника опущенная с вершины C на сторону AB со сторонами 99, 56 и 55 равна 45.1773365
Ссылка на результат
?n1=99&n2=56&n3=55