Рассчитать высоту треугольника со сторонами 99, 69 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{99 + 69 + 35}{2}} \normalsize = 101.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{101.5(101.5-99)(101.5-69)(101.5-35)}}{69}\normalsize = 21.4652739}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{101.5(101.5-99)(101.5-69)(101.5-35)}}{99}\normalsize = 14.9606454}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{101.5(101.5-99)(101.5-69)(101.5-35)}}{35}\normalsize = 42.3172542}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 99, 69 и 35 равна 21.4652739
Высота треугольника опущенная с вершины A на сторону BC со сторонами 99, 69 и 35 равна 14.9606454
Высота треугольника опущенная с вершины C на сторону AB со сторонами 99, 69 и 35 равна 42.3172542
Ссылка на результат
?n1=99&n2=69&n3=35
Найти высоту треугольника со сторонами 148, 133 и 86
Найти высоту треугольника со сторонами 133, 110 и 70
Найти высоту треугольника со сторонами 52, 52 и 13
Найти высоту треугольника со сторонами 132, 118 и 21
Найти высоту треугольника со сторонами 63, 39 и 35
Найти высоту треугольника со сторонами 102, 101 и 40
Найти высоту треугольника со сторонами 133, 110 и 70
Найти высоту треугольника со сторонами 52, 52 и 13
Найти высоту треугольника со сторонами 132, 118 и 21
Найти высоту треугольника со сторонами 63, 39 и 35
Найти высоту треугольника со сторонами 102, 101 и 40