Рассчитать высоту треугольника со сторонами 99, 71 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{99 + 71 + 56}{2}} \normalsize = 113}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{113(113-99)(113-71)(113-56)}}{71}\normalsize = 54.8197385}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{113(113-99)(113-71)(113-56)}}{99}\normalsize = 39.315166}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{113(113-99)(113-71)(113-56)}}{56}\normalsize = 69.503597}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 99, 71 и 56 равна 54.8197385
Высота треугольника опущенная с вершины A на сторону BC со сторонами 99, 71 и 56 равна 39.315166
Высота треугольника опущенная с вершины C на сторону AB со сторонами 99, 71 и 56 равна 69.503597
Ссылка на результат
?n1=99&n2=71&n3=56
Найти высоту треугольника со сторонами 149, 116 и 77
Найти высоту треугольника со сторонами 128, 116 и 83
Найти высоту треугольника со сторонами 122, 112 и 87
Найти высоту треугольника со сторонами 146, 103 и 44
Найти высоту треугольника со сторонами 100, 86 и 15
Найти высоту треугольника со сторонами 82, 82 и 51
Найти высоту треугольника со сторонами 128, 116 и 83
Найти высоту треугольника со сторонами 122, 112 и 87
Найти высоту треугольника со сторонами 146, 103 и 44
Найти высоту треугольника со сторонами 100, 86 и 15
Найти высоту треугольника со сторонами 82, 82 и 51