Рассчитать высоту треугольника со сторонами 99, 87 и 83
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{99 + 87 + 83}{2}} \normalsize = 134.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{134.5(134.5-99)(134.5-87)(134.5-83)}}{87}\normalsize = 78.5663326}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{134.5(134.5-99)(134.5-87)(134.5-83)}}{99}\normalsize = 69.0431408}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{134.5(134.5-99)(134.5-87)(134.5-83)}}{83}\normalsize = 82.3526619}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 99, 87 и 83 равна 78.5663326
Высота треугольника опущенная с вершины A на сторону BC со сторонами 99, 87 и 83 равна 69.0431408
Высота треугольника опущенная с вершины C на сторону AB со сторонами 99, 87 и 83 равна 82.3526619
Ссылка на результат
?n1=99&n2=87&n3=83
Найти высоту треугольника со сторонами 73, 56 и 30
Найти высоту треугольника со сторонами 143, 105 и 62
Найти высоту треугольника со сторонами 107, 100 и 56
Найти высоту треугольника со сторонами 121, 84 и 72
Найти высоту треугольника со сторонами 148, 96 и 70
Найти высоту треугольника со сторонами 140, 122 и 100
Найти высоту треугольника со сторонами 143, 105 и 62
Найти высоту треугольника со сторонами 107, 100 и 56
Найти высоту треугольника со сторонами 121, 84 и 72
Найти высоту треугольника со сторонами 148, 96 и 70
Найти высоту треугольника со сторонами 140, 122 и 100