Рассчитать высоту треугольника со сторонами 99, 98 и 62
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{99 + 98 + 62}{2}} \normalsize = 129.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129.5(129.5-99)(129.5-98)(129.5-62)}}{98}\normalsize = 59.1419837}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129.5(129.5-99)(129.5-98)(129.5-62)}}{99}\normalsize = 58.5445899}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129.5(129.5-99)(129.5-98)(129.5-62)}}{62}\normalsize = 93.4824903}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 99, 98 и 62 равна 59.1419837
Высота треугольника опущенная с вершины A на сторону BC со сторонами 99, 98 и 62 равна 58.5445899
Высота треугольника опущенная с вершины C на сторону AB со сторонами 99, 98 и 62 равна 93.4824903
Ссылка на результат
?n1=99&n2=98&n3=62
Найти высоту треугольника со сторонами 110, 108 и 17
Найти высоту треугольника со сторонами 123, 121 и 98
Найти высоту треугольника со сторонами 149, 138 и 64
Найти высоту треугольника со сторонами 115, 63 и 58
Найти высоту треугольника со сторонами 113, 104 и 27
Найти высоту треугольника со сторонами 146, 142 и 108
Найти высоту треугольника со сторонами 123, 121 и 98
Найти высоту треугольника со сторонами 149, 138 и 64
Найти высоту треугольника со сторонами 115, 63 и 58
Найти высоту треугольника со сторонами 113, 104 и 27
Найти высоту треугольника со сторонами 146, 142 и 108