Найти координаты вершины параболы y=-20x²+12x+8

y=x2+x+
Дано
Квадратный трёхчлен y=-20x²+12x+8
Задача
Найти координаты вершины параболы
Решение
Вычислим по формулам координат вершины параболы
\(\large x_0=-\) \(\LARGE\frac{b}{2a}\) \(\large=\)\(\large -\) \(\LARGE\frac{12}{2 \times (-20)}\)\(\large=3/10=0.3\)
\(\large y_0=\) \(\LARGE\frac{4ac-b^2}{4a}\) \(\large=\)\(\LARGE\frac{4 \times (-20) \times 8-{12}^2}{4 \times (-20)}\)\(\large=49/5=9.8\)
Вершина параболы y=-20x²+12x+8 находится в точке (0.3, 9.8)
Правила ввода

Если вы хотите ввести неполную квадратичную параболу y=ax², y=ax²+bx или y=ax²+c вам нужно вместо соответствующих коэффициентов вписать 0. Если поля останутся пустыми программа впишет 1.

Вводить можно целые(1, 2, 3, -7), десятичные(0.25, -1.15), дробные(-1/8, 32/9). Если необходимо ввести смешанное число, то нужно перед вводом перевести его в неправильную обыкновенную дробь. Т.е. 1 целая 1/2 вводить нужно будет как 3/2.

Ссылка на результат
https://calc-best.ru/matematicheskie/koordinaty-vershiny-paraboly?n1=-20&n2=12&n3=8
Похожие калькуляторы