Рассчитать высоту треугольника со сторонами 100, 93 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{100 + 93 + 13}{2}} \normalsize = 103}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{103(103-100)(103-93)(103-13)}}{93}\normalsize = 11.3409005}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{103(103-100)(103-93)(103-13)}}{100}\normalsize = 10.5470375}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{103(103-100)(103-93)(103-13)}}{13}\normalsize = 81.1310577}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 100, 93 и 13 равна 11.3409005
Высота треугольника опущенная с вершины A на сторону BC со сторонами 100, 93 и 13 равна 10.5470375
Высота треугольника опущенная с вершины C на сторону AB со сторонами 100, 93 и 13 равна 81.1310577
Ссылка на результат
?n1=100&n2=93&n3=13
Найти высоту треугольника со сторонами 149, 148 и 87
Найти высоту треугольника со сторонами 76, 59 и 35
Найти высоту треугольника со сторонами 147, 128 и 87
Найти высоту треугольника со сторонами 58, 53 и 17
Найти высоту треугольника со сторонами 79, 59 и 38
Найти высоту треугольника со сторонами 106, 75 и 33
Найти высоту треугольника со сторонами 76, 59 и 35
Найти высоту треугольника со сторонами 147, 128 и 87
Найти высоту треугольника со сторонами 58, 53 и 17
Найти высоту треугольника со сторонами 79, 59 и 38
Найти высоту треугольника со сторонами 106, 75 и 33