Рассчитать высоту треугольника со сторонами 102, 72 и 47
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{102 + 72 + 47}{2}} \normalsize = 110.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{110.5(110.5-102)(110.5-72)(110.5-47)}}{72}\normalsize = 42.0925589}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{110.5(110.5-102)(110.5-72)(110.5-47)}}{102}\normalsize = 29.7123945}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{110.5(110.5-102)(110.5-72)(110.5-47)}}{47}\normalsize = 64.4822179}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 102, 72 и 47 равна 42.0925589
Высота треугольника опущенная с вершины A на сторону BC со сторонами 102, 72 и 47 равна 29.7123945
Высота треугольника опущенная с вершины C на сторону AB со сторонами 102, 72 и 47 равна 64.4822179
Ссылка на результат
?n1=102&n2=72&n3=47
Найти высоту треугольника со сторонами 83, 68 и 32
Найти высоту треугольника со сторонами 147, 98 и 78
Найти высоту треугольника со сторонами 120, 112 и 65
Найти высоту треугольника со сторонами 113, 111 и 33
Найти высоту треугольника со сторонами 22, 21 и 20
Найти высоту треугольника со сторонами 145, 138 и 49
Найти высоту треугольника со сторонами 147, 98 и 78
Найти высоту треугольника со сторонами 120, 112 и 65
Найти высоту треугольника со сторонами 113, 111 и 33
Найти высоту треугольника со сторонами 22, 21 и 20
Найти высоту треугольника со сторонами 145, 138 и 49