Рассчитать высоту треугольника со сторонами 104, 84 и 48
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{104 + 84 + 48}{2}} \normalsize = 118}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118(118-104)(118-84)(118-48)}}{84}\normalsize = 47.2111098}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118(118-104)(118-84)(118-48)}}{104}\normalsize = 38.1320502}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118(118-104)(118-84)(118-48)}}{48}\normalsize = 82.6194422}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 104, 84 и 48 равна 47.2111098
Высота треугольника опущенная с вершины A на сторону BC со сторонами 104, 84 и 48 равна 38.1320502
Высота треугольника опущенная с вершины C на сторону AB со сторонами 104, 84 и 48 равна 82.6194422
Ссылка на результат
?n1=104&n2=84&n3=48
Найти высоту треугольника со сторонами 71, 56 и 25
Найти высоту треугольника со сторонами 57, 57 и 2
Найти высоту треугольника со сторонами 123, 94 и 36
Найти высоту треугольника со сторонами 128, 111 и 54
Найти высоту треугольника со сторонами 122, 112 и 80
Найти высоту треугольника со сторонами 131, 117 и 64
Найти высоту треугольника со сторонами 57, 57 и 2
Найти высоту треугольника со сторонами 123, 94 и 36
Найти высоту треугольника со сторонами 128, 111 и 54
Найти высоту треугольника со сторонами 122, 112 и 80
Найти высоту треугольника со сторонами 131, 117 и 64