Рассчитать высоту треугольника со сторонами 105, 101 и 59

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{105 + 101 + 59}{2}} \normalsize = 132.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132.5(132.5-105)(132.5-101)(132.5-59)}}{101}\normalsize = 57.5150967}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132.5(132.5-105)(132.5-101)(132.5-59)}}{105}\normalsize = 55.3240454}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132.5(132.5-105)(132.5-101)(132.5-59)}}{59}\normalsize = 98.4580469}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 105, 101 и 59 равна 57.5150967
Высота треугольника опущенная с вершины A на сторону BC со сторонами 105, 101 и 59 равна 55.3240454
Высота треугольника опущенная с вершины C на сторону AB со сторонами 105, 101 и 59 равна 98.4580469
Ссылка на результат
?n1=105&n2=101&n3=59